Nothing
context("translate")
tbl_iris <- tibble::as_tibble(iris)
names(tbl_iris) <- c("SepalLength", "SepalWidth", "PetalLength", "PetalWidth", "Species")
tbl_iris <- tbl_kusto_abstract(tbl_iris, "iris")
tidyr_version <- as.character(packageVersion("tidyr"))
is_new_tidyr <- compareVersion(tidyr_version, '0.8.3') == 1
test_that("params to a function can be used inside a mutate expressions",
{
tbl_iris_p <- tibble::as_tibble(iris)
names(tbl_iris_p) <- c("SepalLength", "SepalWidth", "PetalLength", "PetalWidth", "Species")
tbl_iris_p <- tbl_kusto_abstract(tbl_iris, "iris", p="setosa")
q <- tbl_iris_p %>%
mutate(Species = p)
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| extend ['Species'] = 'setosa'"))
})
test_that("params to a function can be used inside a filter expressions",
{
tbl_iris_p <- tibble::as_tibble(iris)
names(tbl_iris_p) <- c("SepalLength", "SepalWidth", "PetalLength", "PetalWidth", "Species")
tbl_iris_p <- tbl_kusto_abstract(tbl_iris_p, "iris", p="setosa")
q <- filter(tbl_iris_p, Species == p)
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| where ['Species'] == 'setosa'"))
})
test_that("select is translated to project",
{
q <- tbl_iris %>%
dplyr::select(Species, SepalLength) %>%
show_query()
expect_equal(q, kql("cluster('local_df').database('local_df').['iris']\n| project ['Species'], ['SepalLength']"))
})
test_that("distinct is translated to distinct",
{
q <- tbl_iris %>%
dplyr::distinct(Species, SepalLength) %>%
show_query()
expect_equal(q, kql("cluster('local_df').database('local_df').['iris']\n| distinct ['Species'], ['SepalLength']"))
})
test_that("kql_infix formats correctly",
{
fn <- kql_infix("==")
expr <- fn(translate_kql(foo), translate_kql(bar))
expect_equal(expr, kql("['foo'] == ['bar']"))
})
test_that("kql_prefix formats correctly",
{
fn <- kql_prefix("sum")
expr <- fn(translate_kql(foo), translate_kql(bar), translate_kql(baz))
expect_equal(expr, kql("sum(['foo'], ['bar'], ['baz'])"))
})
test_that("filter is translated to where with a single expression",
{
q <- tbl_iris %>%
dplyr::filter(Species == "setosa")
q_str <- q %>%
show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| where ['Species'] == 'setosa'"))
})
test_that("multiple arguments to filter() become multiple where clauses",
{
q <- tbl_iris %>%
dplyr::filter(Species == "setosa", SepalLength > 4.1)
q_str <- q %>%
show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| where ['Species'] == 'setosa'\n| where ['SepalLength'] > 4.1"))
})
test_that("filter errors on missing symbols",
{
q <- tbl_iris %>%
dplyr::filter(Speciess == "setosa")
expect_error(show_query(q))
})
test_that("variables from enclosing environment are passed to filter()",
{
sepal_length_limit <- 2.5
q <- tbl_iris %>%
dplyr::filter(SepalLength <= sepal_length_limit)
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| where ['SepalLength'] <= 2.5"))
})
test_that("variables from enclosing environment are passed to mutate()",
{
sepal_length_limit <- 2.5
q <- tbl_iris %>%
dplyr::mutate(SepalLengthLimit = sepal_length_limit)
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| extend ['SepalLengthLimit'] = 2.5"))
})
test_that("select and filter can be combined",
{
q <- tbl_iris %>%
dplyr::filter(Species == "setosa") %>%
dplyr::select(Species, SepalLength)
q_str <- q %>%
show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| where ['Species'] == 'setosa'\n| project ['Species'], ['SepalLength']"))
})
test_that("select errors on column after selected away",
{
q <- tbl_iris %>%
dplyr::select(Species) %>%
dplyr::select(SepalLength)
expect_error(show_query(q))
})
test_that("mutate translates to extend",
{
q <- tbl_iris %>%
dplyr::mutate(Species2 = Species)
q_str <- q %>%
show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| extend ['Species2'] = ['Species']"))
})
test_that("multiple arguments to mutate() become multiple extend clauses",
{
q <- tbl_iris %>%
dplyr::mutate(Species2 = Species, Species3 = Species2, Foo = 1 + 2)
q_str <- q %>%
show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| extend ['Species2'] = ['Species']\n| extend ['Species3'] = ['Species2']\n| extend ['Foo'] = 1 + 2"))
})
test_that("sum() translated correctly",
{
expect_equal(as.character(translate_kql(MeanSepalLength = mean(SepalLength, na.rm = TRUE))),
"avg(['SepalLength'])"
)
})
test_that("arrange() generates order by ",
{
q <- tbl_iris %>%
dplyr::arrange(Species, desc(SepalLength))
q_str <- q %>%
show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| order by ['Species'] asc, ['SepalLength'] desc"))
})
test_that("group_by() followed by summarize() generates summarize clause",
{
q <- tbl_iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(MaxSepalLength = max(SepalLength, na.rm = TRUE))
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize ['MaxSepalLength'] = max(['SepalLength']) by ['Species']"))
})
test_that("group_by() followed by summarize() with multiple summarizations generates one summarize clause",
{
q <- tbl_iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(MaxSepalLength = max(SepalLength, na.rm = TRUE),
MaxSepalWidth = max(SepalWidth, na.rm = TRUE))
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize ['MaxSepalLength'] = max(['SepalLength']), ['MaxSepalWidth'] = max(['SepalWidth']) by ['Species']"))
})
test_that("group_by() followed by summarize() with multiple summarizations generates one summarize clause in presence of hints",
{
q <- tbl_iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(MaxSepalLength = max(SepalLength, na.rm = TRUE),
MaxSepalWidth = max(SepalWidth, na.rm = TRUE), .strategy="shuffle")
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize hint.strategy = shuffle ['MaxSepalLength'] = max(['SepalLength']), ['MaxSepalWidth'] = max(['SepalWidth']) by ['Species']"))
})
test_that("group_by() followed by ungroup() followed by summarize() generates summarize clause",
{
q <- tbl_iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(MaxSepalLength = max(SepalLength, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::summarize(MeanOfMaxSepalLength = mean(MaxSepalLength, na.rm = TRUE))
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize ['MaxSepalLength'] = max(['SepalLength']) by ['Species']\n| summarize ['MeanOfMaxSepalLength'] = avg(['MaxSepalLength'])"))
})
test_that("group_by() followed by mutate() partitions the mutation by the grouping variables",
{
q <- tbl_iris %>%
dplyr::group_by(Species) %>%
dplyr::mutate(SpeciesMaxSepalLength = max(SepalLength, na.rm = TRUE))
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| as tmp | join kind=leftouter (tmp | summarize ['SpeciesMaxSepalLength'] = max(['SepalLength']) by ['Species']) on ['Species']\n| project ['SepalLength'], ['SepalWidth'], ['PetalLength'], ['PetalWidth'], ['Species'], ['SpeciesMaxSepalLength']"))
})
test_that("mutate() with an agg function and no group_by() groups by all other columns",
{
q <- tbl_iris %>%
dplyr::mutate(MaxSepalLength = max(SepalLength, na.rm = TRUE))
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize ['MaxSepalLength'] = max(['SepalLength']) by ['SepalLength'], ['SepalWidth'], ['PetalLength'], ['PetalWidth'], ['Species']"))
})
test_that("is_agg works with symbols and strings",
{
expect_true(is_agg(n))
expect_true(is_agg("n"))
expect_false(is_agg(o))
expect_false(is_agg("o"))
expect_false(is_agg(`+`))
expect_false(is_agg(abs))
expect_false(is_agg(TRUE))
})
test_that("rename() renames variables",
{
q <- tbl_iris %>%
dplyr::rename(Species2 = Species, SepalLength2 = SepalLength)
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| project-rename ['Species2'] = ['Species'], ['SepalLength2'] = ['SepalLength']"))
})
test_that("rename() errors when given a nonexistent column",
{
q <- tbl_iris %>%
dplyr::rename(Species2 = Species1)
expect_error(show_query(q))
})
test_that("head(10) translates to take 10",
{
q <- tbl_iris %>%
head(10)
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| take 10"))
})
test_that("head() translates to take 6 (the default)",
{
q <- tbl_iris %>%
head()
q_str <- q %>% show_query
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| take 6"))
})
left <- tbl_iris
right <- iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(MaxSepalLength = max(Sepal.Length, na.rm = TRUE))
right2 <- iris %>%
dplyr::rename(SepalWidth = Sepal.Width) %>%
dplyr::group_by(Species, SepalWidth) %>%
dplyr::summarize(MaxSepalLength = max(Sepal.Length, na.rm = TRUE))
right3 <- right2 %>% dplyr::rename(Species2 = Species, SepalWidth2 = SepalWidth)
right <- tbl_kusto_abstract(right, "iris2")
right2 <- tbl_kusto_abstract(right2, "iris2")
right3 <- tbl_kusto_abstract(right3, "iris3")
test_that("inner_join() on a single column translates correctly",
{
q <- left %>%
dplyr::inner_join(right, by = c("Species"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = inner (cluster('local_df').database('local_df').['iris2']) on ['Species']"))
})
test_that("inner_join() on two columns translates correctly",
{
q <- left %>%
dplyr::inner_join(right2, by = c("Species", "SepalWidth"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = inner (cluster('local_df').database('local_df').['iris2']) on ['Species'], ['SepalWidth']"))
})
test_that("inner_join() on one differently named column translates correctly",
{
q <- left %>%
dplyr::inner_join(right3, by = c("Species" = "Species2"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = inner (cluster('local_df').database('local_df').['iris3']) on $left.['Species'] == $right.['Species2']"))
})
test_that("inner_join() on two differently named columns translates correctly",
{
q <- left %>%
dplyr::inner_join(right3, by = c("Species" = "Species2", "SepalWidth" = "SepalWidth2"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = inner (cluster('local_df').database('local_df').['iris3']) on $left.['Species'] == $right.['Species2'], $left.['SepalWidth'] == $right.['SepalWidth2']"))
})
test_that("left_join() on a single column translates correctly",
{
q <- left %>%
dplyr::left_join(right, by = c("Species"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = leftouter (cluster('local_df').database('local_df').['iris2']) on ['Species']"))
})
test_that("right_join() on a single column translates correctly",
{
q <- left %>%
dplyr::right_join(right, by = c("Species"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = rightouter (cluster('local_df').database('local_df').['iris2']) on ['Species']"))
})
test_that("full_join() on a single column translates correctly",
{
q <- left %>%
dplyr::full_join(right, by = c("Species"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = fullouter (cluster('local_df').database('local_df').['iris2']) on ['Species']"))
})
test_that("semi_join() on a single column translates correctly",
{
q <- left %>%
dplyr::semi_join(right, by = c("Species"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = leftsemi (cluster('local_df').database('local_df').['iris2']) on ['Species']"))
})
test_that("anti_join() on a single column translates correctly",
{
q <- left %>%
dplyr::anti_join(right, by = c("Species"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = leftanti (cluster('local_df').database('local_df').['iris2']) on ['Species']"))
})
test_that("union_all translates correctly",
{
tbl_iris_2 <- tbl_kusto_abstract(iris, "iris")
q <- tbl_iris %>%
dplyr::union_all(tbl_iris_2)
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| union kind = outer (cluster('local_df').database('local_df').['iris'])"))
})
test_that("as.Date() produces a Kusto datetime",
{
dates <- c("2019-01-01", "2019-01-02", "2019-01-03")
dates <- as.Date(dates)
words <- c("Tuesday", "Wednesday", "Thursday")
df <- data.frame(dates, words)
tbl_dates <- tbl_kusto_abstract(df, "df")
q <- tbl_dates %>%
filter(dates == as.Date("2019-01-01"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['df']\n| where ['dates'] == todatetime('2019-01-01')"))
})
test_that("as.POSIXct() produces a Kusto datetime",
{
dates <- c("2019-01-01T23:59:59", "2019-01-02T23:59:58", "2019-01-03T00:00:00")
dates <- as.POSIXct(strptime(dates, "%Y-%m-%dT%H:%M:%S", tz="UTC"))
words <- c("Tuesday", "Wednesday", "Thursday")
df <- data.frame(dates, words)
tbl_dates <- tbl_kusto_abstract(df, "df")
q <- tbl_dates %>%
filter(dates == as.POSIXct(strptime("2019-01-01T23:59:59", "%Y-%m-%dT%H:%M:%S", tz="UTC")))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['df']\n| where ['dates'] == todatetime(todatetime('2019-01-01T23:59:59'))"))
})
test_that("as.POSIXlt() produces a Kusto datetime",
{
dates <- c("2019-01-01", "2019-01-02", "2019-01-03")
dates <- as.POSIXlt(dates)
words <- c("Tuesday", "Wednesday", "Thursday")
df <- data.frame(dates, words)
tbl_dates <- tbl_kusto_abstract(df, "df")
q <- tbl_dates %>%
filter(dates == as.POSIXlt("2019-01-01"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['df']\n| where ['dates'] == todatetime('2019-01-01')"))
})
test_that("join hinting translates correctly",
{
q <- left %>%
dplyr::inner_join(right, by = c("Species"), .strategy="broadcast")
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = inner hint.strategy = broadcast (cluster('local_df').database('local_df').['iris2']) on ['Species']"))
q <- left %>%
dplyr::inner_join(right2, by = c("Species", "SepalWidth"), .strategy="broadcast")
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = inner hint.strategy = broadcast (cluster('local_df').database('local_df').['iris2']) on ['Species'], ['SepalWidth']"))
q <- left %>%
dplyr::inner_join(right2, by = c("Species", "SepalWidth"), .strategy="shuffle",
.shufflekeys=c("Species", "SepalWidth"))
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = inner hint.strategy = shuffle hint.shufflekey = ['Species'] hint.shufflekey = ['SepalWidth'] (cluster('local_df').database('local_df').['iris2']) on ['Species'], ['SepalWidth']"))
# only numeric input to .num_partitions allowed
q <- left %>%
dplyr::inner_join(right2, by = c("Species", "SepalWidth"), .strategy="shuffle",
.shufflekeys=c("Species", "SepalWidth"),
.num_partitions="foo")
expect_error(show_query(q))
q <- left %>%
dplyr::inner_join(right2, by = c("Species", "SepalWidth"), .strategy="shuffle",
.shufflekeys=c("Species", "SepalWidth"),
.num_partitions=2)
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| join kind = inner hint.strategy = shuffle hint.shufflekey = ['Species'] hint.shufflekey = ['SepalWidth'] hint.num_partitions = 2 (cluster('local_df').database('local_df').['iris2']) on ['Species'], ['SepalWidth']"))
})
test_that("summarize hinting translates correctly",
{
q <- tbl_iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(MaxSepalLength = max(SepalLength, na.rm = TRUE), .strategy="shuffle")
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize hint.strategy = shuffle ['MaxSepalLength'] = max(['SepalLength']) by ['Species']"))
q <- tbl_iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(MaxSepalLength = max(SepalLength, na.rm = TRUE), .shufflekeys=c("SepalLength", "SepalWidth"))
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize hint.shufflekey = ['SepalLength'] hint.shufflekey = ['SepalWidth'] ['MaxSepalLength'] = max(['SepalLength']) by ['Species']"))
# only numeric input to .num_partitions allowed
q <- tbl_iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(MaxSepalLength = max(SepalLength, na.rm = TRUE),
.shufflekeys=c("SepalLength", "SepalWidth"), .num_partitions="foo")
expect_error(show_query(q))
q <- tbl_iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(MaxSepalLength = max(SepalLength, na.rm = TRUE),
.shufflekeys=c("SepalLength", "SepalWidth"), .num_partitions=2)
q_str <- q %>% show_query()
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize hint.shufflekey = ['SepalLength'] hint.shufflekey = ['SepalWidth'] hint.num_partitions = 2 ['MaxSepalLength'] = max(['SepalLength']) by ['Species']"))
})
test_that("unnest translates to mv-expand",
{
list_df <- tibble::tibble(
x = 1:2,
y = list(a = 1, b = 3:4)
)
list_tbl <- tbl_kusto_abstract(list_df, table_name = "list_tbl")
q <- list_tbl %>%
tidyr::unnest(y)
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['list_tbl']\n| mv-expand ['y']"))
})
test_that("unnest can handle multiple columns",
{
list_df <- tibble::tibble(
x = 1:2,
y = list(a = 1, b = 3:4),
z = list(c = 2, b = 5:6)
)
list_tbl <- tbl_kusto_abstract(list_df, table_name = "list_tbl")
if (is_new_tidyr)
{
q <- list_tbl %>%
tidyr::unnest(c(y, z))
}
else
{
q <- list_tbl %>%
tidyr::unnest(y, z)
}
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['list_tbl']\n| mv-expand ['y'], ['z']"))
})
if (!is_new_tidyr)
{
test_that("unnest .id translates to with_itemindex",
{
list_df <- tibble::tibble(
x = 1:2,
y = list(a = 1, b = 3:4)
)
list_tbl <- tbl_kusto_abstract(list_df, table_name = "list_tbl")
q <- list_tbl %>%
tidyr::unnest(y, .id = "name")
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['list_tbl']\n| mv-expand with_itemindex=['name'] ['y']"))
})
}
test_that("nest translates to summarize makelist()",
{
if (is_new_tidyr)
{
q <- tbl_iris %>%
tidyr::nest(data = c(SepalLength, SepalWidth, PetalLength, PetalWidth))
}
else
{
q <- tbl_iris %>%
tidyr::nest(SepalLength, SepalWidth, PetalLength, PetalWidth)
}
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize ['SepalLength'] = make_list(['SepalLength']), ['SepalWidth'] = make_list(['SepalWidth']), ['PetalLength'] = make_list(['PetalLength']), ['PetalWidth'] = make_list(['PetalWidth']) by ['Species']"))
})
test_that("nest respects preceding group_by",
{
q <- tbl_iris %>%
group_by(Species) %>%
tidyr::nest()
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize ['SepalLength'] = make_list(['SepalLength']), ['SepalWidth'] = make_list(['SepalWidth']), ['PetalLength'] = make_list(['PetalLength']), ['PetalWidth'] = make_list(['PetalWidth']) by ['Species']"))
})
test_that("nest nests all non-provided columns",
{
if (is_new_tidyr)
{
q <- tbl_iris %>%
tidyr::nest(data = c(-Species))
}
else
{
q <- tbl_iris %>%
tidyr::nest(-Species)
}
q_str <- show_query(q)
expect_equal(q_str, kql("cluster('local_df').database('local_df').['iris']\n| summarize ['SepalLength'] = make_list(['SepalLength']), ['SepalWidth'] = make_list(['SepalWidth']), ['PetalLength'] = make_list(['PetalLength']), ['PetalWidth'] = make_list(['PetalWidth']) by ['Species']"))
})
test_that("kusto export command renders correctly",
{
cmd <- kusto_export_cmd(
query = kql_render(kql_build(dplyr::summarize(tbl_iris, ct = n()))),
storage_uri = "http://mystorage.blob.core.windows.net",
name_prefix = "my_iris",
key = "impersonate",
format = "parquet",
distributed = TRUE
)
expected <- ".export
compressed
to parquet (h@'http://mystorage.blob.core.windows.net/my_iris;impersonate')
with (
sizeLimit=1073741824,
namePrefix='my_iris',
fileExtension='parquet',
compressionType='snappy',
includeHeaders='firstFile',
encoding='UTF8NoBOM',
distributed=true
)
<|
cluster('local_df').database('local_df').['iris']
| summarize ['ct'] = count()
"
expect_equal(expected, cmd)
})
test_that("kusto export command renders correctly for csv",
{
cmd <- kusto_export_cmd(
query = kql_render(kql_build(dplyr::summarize(tbl_iris, ct = n()))),
storage_uri = "http://mystorage.blob.core.windows.net",
name_prefix = "my_iris",
key = "impersonate",
format = "csv",
distributed = FALSE
)
expected <- ".export
compressed
to csv (h@'http://mystorage.blob.core.windows.net/my_iris;impersonate')
with (
sizeLimit=1073741824,
namePrefix='my_iris',
fileExtension='csv',
compressionType='gzip',
includeHeaders='firstFile',
encoding='UTF8NoBOM',
distributed=false
)
<|
cluster('local_df').database('local_df').['iris']
| summarize ['ct'] = count()
"
expect_equal(expected, cmd)
})
test_that("kusto export command errors if format not in allowed list",
{
expect_error(
kusto_export_cmd(
query = kql_render(kql_build(dplyr::summarize(tbl_iris, ct = n()))),
storage_uri = "http://mystorage.blob.core.windows.net",
name_prefix = "my_iris",
key = "impersonate",
format = "avro",
distributed = FALSE
)
)
})
test_that("%in% operator works for vectors",
{
q <- tbl_iris |>
filter(Species %in% c("setosa", "versicolor"))
expected <- kql("cluster('local_df').database('local_df').['iris']
| where ['Species'] in ('setosa', 'versicolor')")
q_str <- show_query(q)
expect_equal(q_str, expected)
})
test_that("%!in% operator works for vectors",
{
q <- tbl_iris |>
filter(Species %!in% c("setosa", "versicolor"))
expected <- kql("cluster('local_df').database('local_df').['iris']
| where ['Species'] !in ('setosa', 'versicolor')")
q_str <- show_query(q)
expect_equal(q_str, expected)
})
test_that("%in~% operator works for vectors",
{
q <- tbl_iris |>
filter(Species %in~% c("setosa", "versicolor"))
expected <- kql("cluster('local_df').database('local_df').['iris']
| where ['Species'] in~ ('setosa', 'versicolor')")
q_str <- show_query(q)
expect_equal(q_str, expected)
})
test_that("%in% operator works for tables",
{
rhs <- select(tbl_iris, Species)
q <- tbl_iris |>
filter(Species %in% rhs)
expected <- kql("cluster('local_df').database('local_df').['iris']
| where ['Species'] in ((cluster('local_df').database('local_df').['iris']
| project ['Species']))")
q_str <- show_query(q)
expect_equal(q_str, expected)
})
test_that("%!in% operator works for tables",
{
rhs <- select(tbl_iris, Species)
q <- tbl_iris |>
filter(Species %!in% rhs)
expected <- kql("cluster('local_df').database('local_df').['iris']
| where ['Species'] !in ((cluster('local_df').database('local_df').['iris']
| project ['Species']))")
q_str <- show_query(q)
expect_equal(q_str, expected)
})
test_that("%in~% operator works for tables",
{
rhs <- select(tbl_iris, Species)
q <- tbl_iris |>
filter(Species %in~% rhs)
expected <- kql("cluster('local_df').database('local_df').['iris']
| where ['Species'] in~ ((cluster('local_df').database('local_df').['iris']
| project ['Species']))")
q_str <- show_query(q)
expect_equal(q_str, expected)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.